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Complementary variational formulations are developed for the scattering of a 
gravity wave by a circular dock. These formulations, which are based on assumed 
distributions of the radial velocity and the potential, respectively, on the 
projection of the cylindrical boundary, yield lower and upper bounds to an 
impedance parameter that determines the difference between the scattered wave 
for the dock and the corresponding wave for a circular cylinder. Numerical 
results, using trial functions based on the incident wave, are compared with the 
results implied by a Galerkin solution (Garrett 1971). The maximum errors in the 
variational approximations to the total scattering cross-section are found to be 
of the order of 2 yo for a typical depthlradius ratio, draft/depth ratios of 0, 
Q and 1, and all wavelengths. The axisymmetric component of the scattering 
cross-section is found to be very close to the value for scattering by a circular 
cylinder (dock extending to bottom). The intensity of the scattered wave on the 
forward axis for long wavelengths and a certain range of the geometric parameters 
is significantly less than that for a circular cylinder, and may vanish for critical 
combinations of these parameters. 

1. Introduction 
We consider the scattering of a gravity wave of amplitude Q and period 2 n - l ~  

by a circular dock of radius a and draft d- h in water of depth d, as in Miles & 
Gilbert (1968) and Garrett (1971). We refer to these antecedent formulations 8,s 
I and 11, respectively. 

The displacement potential and free-surface displacement corresponding to 
the incident wave, 

are given by (I(l .2)-(1.6) or I1 (2.2)-(2.7)) 

& = Q exp (ikr cos O ) ,  (1.1) 

m 

( b ( ? . ) O ) Z )  = Co €mi"$m(r,z) cosmo (Em = 2-8,) (1.2) 
m= 0 

00 

and C(y) 0) = Co X CmirnXm(r) C O S ~ O ,  Xm = (a@m/az)z=d> (1.3a, b) 

where II., may be represented in terms of assumed values of either 

m=O 

f m ( z )  = a@,/ar ( r  = a, 0 < x < h) (1.4) 

+f Also Department of Aerospace and Mechanical Engineering Sciences. 
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or fm(z) = d-111. ( r  = a, 0 6 z 6 d) ,  (1.5) 

as in I and 11, respectively. These alternative formulations yield complementary 
variational principles of Schwinger’s type, which are especially powerful for the 
calculation of the scattered wave (cf. Miles 1946, where complementary 
variational principles for acoustical scattering are developed). 

2. First variational principle 

surface-wave mode from I1 (Al) ,  may be posed in the form, 
The integral equation governing f,(z), as obtained by separating out the 

where the constraint P h  

Pma, G,,, Z,(z), and Z J z )  are given by I1 (2.29), (2.30), (2.19), and (2.20), re- 
spectively, and the a summation is over the positive, real roots of I1 (2.18) but 
not the root a = - ik. We remark that ,%ma and Gmn are positive-real, in virtue of 
which the kernel ym(z, C) is positive-definite. 

We transform (2.1) to a real integral equation by introducing the scale 
transformation, 

and the real parameter (I1 (3.5)), 

(2.8) 

(2.9) 

! m k )  = f m ( 4 / F k ,  

$mk = (FWJFrnk) - 3mk  = 11%~; 

then 

subject to the additional constraint ( I o ( z )  also must satisfy (2.2)) 

df &,(z)Z,(z) dx = 1. (2.11) 
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We note that urn = 0 for the limiting case of the full cylinder (h  = 0). w e  may 
identify (bmk as a pure reactance in series with a complex impedance g m k  in an 
equivalent circuit in which F, is (the complex amplitude of) an input voltage, 
SnLk is a current that is directly proportional to the perturbation potential of the 
scattered surface wave, and $$mkF& is a measure of the stored energy of the 
internal waves-which are trapped, or non-propagating modes. This analogy 
may be conceptually valuable, especially in giving the parameter 4wL,c a less 
abstract character, but it does not appear profitable to pursue it further in the 
present context.] 

Multiplying both sides of (2.10) by i m ( z ) ,  integrating over (0,h) and invoking 
(2.2) and (2.11), we obtain 

which is stationary with respect to first-order variations of 1, about the solution 
to the integral equation (2.10), subject to the constraints (2.11) and (2.2) (the 
constant C,, is proportional to the Lagrange multiplier that must be introduced in 
carrying out the standard variational procedure for m = 0). Moreover, the 
approximation +zk = $mk(t$) is an upper bound to $rnk for any trial function, 
p:h(z), t ha t  is in L2(0,h) and satisfies (2.11) and, for m = 0, (2.2). To prove this 
last assertion, we consider the integral 

e 4rn,(PZfz) - i m ( z ) )  (2.13a) 

(2 .134  

which is non-negative by virtue of the positive-definite character of yrn and 
vanishes if and only if = I,, where 1, satisfies (2.10) and (2.11) and, for 
m = 0, (2.2). Multiplying (2.10) through by [$(z) ,  integrating over (O,h), and 
substituting the resulting double integral into (2.13b), we obtain 

8 = $&-$mk 2 0. (2.14) 

The foregoing proof is closely related to the question of uniqueness for the 
solution of (2.10) (the existence and uniqueness of the solution to the original 
boundary-value problem, as posed by I (1.7)-(1.1 l), appears to be guaranteed by 
the investigation of John (1950), but the transformation of this problem to an 
integral equation of the first kind poses additional difficulties). Suppose that 
i rn ( z )  and pz(z)  are two distinct solutions of (2.10) and (2.11) and, form = 0, (2.2). 
Multiplying (2.10) through by i z ( z ) ,  integrating over (O,h), and invoking the 
symmetry of ym(z,tJ and the hypotheses that /’z satisfies (2.10) and (2.2), we 
obtain 

$mkIoh !:Zkdz = sh/’ i k ( z ) y m ( z ,  6) trn(6) d6dz (2.15a) 
0 0  

( 2 . 1 5 ~ )  
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Invoking (2.1 1) for both &, and &g, we obtain = q5ik. This, in turn, implies, 
through (2.14), that the positive-definite integral e must vanish, and hence that 
& i ( z )  = &,(z), thereby establishing the uniqueness of the solution. 

Finally, we eliminate the constraint (2.11) by substituting 1, from (2.8) into 
(2.12), invoking (2.5) for Fmk, and taking the reciprocal of the result to obtain 

which is equivalent to I (3.2). We emphasize that C,, drops out of both (2.16) and 
I(3.2)  by virtue of (2.2). The functional w;{ f,) is stationary with respect to first- 
order variations of f,(z) about the true solution to the integral equation (2.1), 
subject to the constraint (2.2) if m = 0 ,  is invariant under a scale transformation 
off,, and yields the lower bound, 

u; = w<(f:(k)} < om, (2.17) 

where w; = w, if and only if f z ( z )  = f,(z), and the inequality is global (rather 
than local, as in the typical Rayleigh-Ritz approximation) for any f z ( z )  $. f,(z). 

3. Second variational principle 
Turning now to the formulation of I1 for f,(z), we subtract (Srnk/G&J Z,(z) 

from both sides of both I1 (2.25) and I1 (2.26) and combine the results to obtain 

where (3.2) 

m 

and the surface-wave mode (a = -ik) is omitted from the a-summation. We 
remark that g, is positive-definite and differs from 2, only through the inversion 
of grna and Gmn, Proceeding as in Q 2, we obtain 

where wZ{f,) is stationary with respect to first-order variations of f,(z) about the 
true solution to the integral equation (3.1), and 

= w${fz(z)} >, w,. (3.5) 
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4. Scattered field 
The scattered field is given by (I (1.12)) 

where 

= c--& - co(a/r)*exp(ikr)A(8)  (kr-tm),  

m 

A(8)  = C e,A,cosnd 
m = 0 

145 

is the scattering amplitude. Substituting 

A, = %LkIFm = l l ($ rnk  + %lk) 

from (2.9) above into I (4.3), we obtain 

A rn = - ($rka)-&exp (-i7ri4) (kaHk-w,H,)-l(kaJk-w,J,), (4.3) 

where the argument of J, and H, is ka, and J& and H& are the derivatives with 
respect to this argument. The total scattering cross-section is given by 

m 

Q = a~2'lA(r9)12d8 = a C Q,, 
0 m=O 

(4.4) 

where Q,, = 2 ~ & L 1 ~  (4.5a) 

= 4~,(ka)-~1kccHk- o,H,I-2(LaJ~-w,J,)2. (4.5b) 

We note that Q = - (87ra/lc)*a (exp (ir/4)A(O)}. (4.6) 

Setting w, = 0 in (4.3)-(4.5), we recover the known results for the circular 
cylinder, say A:), Q ' O ) ,  and Qg) .  We remark that the zeros of A,, qua function of 
ka, lie between the zeros of J, and J k  and that Q, < 4e,/h.  

The limiting forms of the preceding results as ka J. 0 with h /a  and dia fixed are: 

wo = 0(k4h4), (4.7) 

A(@) = (7r/S)&(kn)texp(in/4)(- 1 + 2 ( l  +wl)-I(l -oJ,)cos@), ( 4 . 8 ~ ~ )  

A ,  = (27r)~(ka/2)2m-~(m!(m-1) ! (m+~m)}-1(m-~m) (m 2 l), (4.8b) 

and 

within error factors of 1 + O(k2a210g ka).  The axisymmetric component of A(@) 
tends to that of a cylinder by virtue of (4.7), whereas the dipole component may 
be substantially less than that for a cylinder. We also remark that A(8) is a 
rearward-facing cardioid, and A ( 0 )  vanishes like ( k a ) f ,  rather than (ka)h, if 

Q = $7r2k3a4{1 + 2( 1 + w1)-2 (1  - (4.9) 

w1 = *. 
A convenient measure of A(0) is the forward-scattering ratio, 

m W 

27ralA(O)j2/& = I c crnAmI'/ c eml~m12,  (4.10) 
m=O m= 0 

which reduces to unity for isotropic (axisymmetric) scattering. 
10 P L M  46 
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5. Numerical tests 
The variational formulations of (2.16) and (3.4) permit w,, and hence A,, to 

be approximated within a determined error. The approximation I (3.5) implies 
the lower bound, 

a, 

w; = I C % b , ( . ~ : , / ~ i k ) 2  + ( h / 4  x %G,n(F;n/F;k)2}-1' (5.1) 
a n=O 

where FZB, 9$,, and 2F:k are given by I(3.6)-(3.8); also F& = Lnk, as given by 
I1 (2.34). The approximation f: = Zk(x) implies the upper bound, 

m 

n = O  
W& = (h /d)  C enG&L;&k. 

Letting ka J. 0 with d/a and h/d fixed, we obtain 
m 

( d z  = (h /d)  {m-l+ (2/r2) (d /h)  5 p-'GmP sin2 ( p ~ h / d ) ) - l  (,5.3a) 

(5.3b) 

p = l  

+ mh/d - (2m2/r2) {m2 + ( m / d ) 2 } - 3  sin' (rhid), 

and ~2 = mh/d, (5.4) 
within error factors of 1 + O(k2h2). We remark that w z  and w z  coincide in both of 
the limits h/d 4 0 and h/d f 1 and exhibit a maximum difference, for fixed dja, a t  
hjd = 4; this suggests that  h/d = $provides the most critical test of the variational 
bounds, a t  least for m > 0 and moderate values of k. 

ka w: 0 0  

1 2 . 8 ~  10-4 3.1 x 10-4 
2 3 . 6 ~ 1 0 - 4  4 . 0 ~ 1 0 - 4  
3 0.012 0.014 
4 0-023 0.026 
5 0.030 0.035 
7 0.029 0.034 
9 0.019 0.022 

4- w;; 
5.4 x 0.440 
6.9 x 0,357 
0.024 0.254 
0.045 0.162 
0.059 0.098 
0.057 0.035 
0,037 0.013 

6J 1 

0.443 
0.367 
0.275 
0.194 
0.135 
0.067 
0.033 

w: w: (LIZ w,' 

0.470 0.829 0.839 0.939 
0.393 0-666 0.684 0.779 
0.301 0.466 0.495 0.578 
0.221 0,294 0.331 0.398 
0.163 0.175 0.215 0.267 
0.089 0.061 0.092 0.122 
0.047 0.022 0.041 0.057 

TABLE 1. w,, as determined by the variational approximations (5.1) and 
(5.2) and by Garrett's (1971) solution for h = Ad and d = &a 

Some numerical values of w, determined by Garrett (1971) for h = i d ,  d =+a, 
and m = 0 , l '  2 are compared with the corresponding variational approximations 
in table 1. The corresponding approximations for m > 2 are comparable in 
accuracy with those form = 1 and 2. The larger errors form = 0 have a negligible 
effect on the axisymmetric scattering amplitude A ,  by virtue of its proximity to 
Aho). The variational approximations to Q,, Q1 and Q are compred with the 
values determined by Garrett's solution in table 2 .  We use the superscripts 
< and > to identify the approximations determined by the lower and upper 
bounds to w,, but emphasize that QZ and QZ are not necessarily lower and upper 
bounds to Q ,  (although the difference between w k  and w$ may be used to  deter- 
mine the maximum error in either &f or Qz).  The maximum errors in &" and 
Qi, as determined by reference to Garrett's solution (for which the error is 
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less than 0.1 yo), are 0.3 % and 2 %, respectively. We note the proximity of Q0 
and Q',"), which follows from oo < 1 and reflects the incompressibility of the fluid 
under the dock. 

Numerical values of w1 and Q for the limiting case of a disk (h  = d )  are compared 
in table 3. The maximum errors in Q' and Q' are 2.6 % and 2.1 %, respectively. 

La 
1 
2 
3 
4 
5 
7 
9 

9,' Qo 9,' 
0.9642 0.9643 0.9649 
1.9346 1.9347 1.9357 
0.6903 0.6896 0.6854 
0.0287 0.0289 0.0305 
0.6682 0.6687 0.6715 

(< 10-4) 
0.3757 0.3756 0.3751 

Qbo) 0: 
0.9635 0.093 
1.9334 0.305 
0.6955 1.960 
0.0268 1.781 
0.6646 0.140 

1.138 
0.3764 0.175 

Qi Q: 
0.091 0.073 
0.314 0.338 
1.976 1.996 
1.771 1.762 
0.134 0.129 
1.138 1.137 
0.177 0.178 

Q:"' 
0.981 
0.052 
1.756 
1.829 
0.158 
1.139 
0.174 

&'la &la &'la 
1.064 1.062 1.043 
2.341 2.344 2.336 
2.850 2.861 2.846 
3.030 3.026 2.997 
3.207 3.197 3.160 
3.431 3.427 3.403 
3.546 3.545 3.535 

Q'O'/a 

2.000 
2.718 
3.033 
3.213 
3.330 
3.475 
3.561 

TABLE 2. Qo, Ql, and Q, as determined by the variational approximations and by Garrett's (1971) 
solution for h = ad and d = +a, compared with QF', QYJ, and Q(O) for a circular cylinder (h = 0) 

ka w< 0 1  w: &'la &la &'/a Q(O)/a 
0.4 1.00003 1.00012 1.00020 0.12013 0.12015 0.12044 0.415 
1 1.0011 1.0044 1.0074 1.0140 1.0156 1.0273 2.000 
2 1.015 1.060 1.103 3.008 3.061 3,125 2.718 
3 1.064 1.237 1.413 3.800 3.914 3.929 3.033 
4 1.15 1.55 1.96 3.885 3.843 3.872 3.213 
5 1.28 1.95 2.63 3.961 3.950 4.004 3.330 
7 1.59 2.84 4.05 4.077 4.051 4.071 3.475 

TABLE 3. Comparison of variational approximations with Garrett's (1971) 
solution for the limiting case of a disk (h  = d )  with d = 4u 

0 1 2 3 4 5 6 7  
kU 

FIGURE 1. The dimensionless scattering cross-section, &/a, for d/a = 4 (the result for h/d = 0 
corresponds to a circular cylinder and is independent of d/a). 

10-2 
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The variational approximat,ions for this limiting case are significantly superior 
to  those for hld = 6 if ka 5 1, as anticipated above; they are, on the other hand, 
less accurate for larger k,  especially ka 3 2 ,  presumably in consequence of the 
oscillatory character of Q us. lca for ka 2 3. We infer from (4.8), wherein wTn = m 
for h = d, that  the disk is an isotropic scatterer for sufficiently small ka; see also 
figure 2 ,  wherein A J. 1 as ka 4 0. 

ka 

FIGURE 2 .  The forward-scattering ratio, as defined by (4.10), for dia = a. The lrlsert 
magnifies tho cross-hatched area of the main plot. 

The results for the opposite limiting case, h/d J. 0, are of little interest owing to 
the fact that  our formulation becomes exact in this limit. 

The values of Q and Q ( O )  are plotted in figure 1. The values of Q differ signifi- 
cantly from those presented in I, partially in consequence of an error in 1: (3.3) 
(see below) and partially in consequence of a computing error. (J. L. Black, 
M. C. G. Bray & C. C. Mei, private communication, have also recalculated Q; 
their results are for different d / a  than, but are consistent with, those given here.) 
The forward-scattering ratio, as defined by (4.10) is plotted in figure 2 .  

This work was supported by the National Science Foundation, under Grant 
NSF-GA-10324, and by the Office of Naval Research, under Contract N00014- 
69-A-0200-6005. I am indebted to C. J. R. Garrett for stimulating discussions 
and for the programming of the numerical calculations. 
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Corrigenda for 

‘Scattering of gravity waves by a circular dock’ 
by J. W. MILES and J. F. GILBERT, J .  Fluid Mech. vol. 34, 1968, p. 783. 

The term aC, should be added to the r.h.s. of (2.7). 

The term C, should be added to the r.h.s. of both (2.19) and (2.20). 

The lower limit for the second summation in (3.3) should be n = 0, and the 

A minus sign should be inserted on the r.h.s. of both ( 5 . 6 ~ )  and ( 5 . 6 b ) ,  and 

The numerical results presented in figures 2-5 are substantially in error. See 

factor 2 should be deleted. 

[, should be deleted in ( 5 . 6 ~ ) .  

Black, Mei & Bray (1971) and Garrett (1971). 


